*Patrick Dondl (Freiburg, Germany)*

We consider the problem of minimizing Willmore’s energy on confined and connected surfaces with prescribed surface area. To this end, we approximate the surface by a level set function u admitting the value +1 on the inside of the surface and -1 on its outside. The confinement of the surface is now simply given by the domain of definition of u. A diffuse interface approximation for the area functional, as well as for Willmore’s energy are well known. We address the main difficulty, namely the topological constraint of connectedness by a penalization of a geodesic distance which is chosen to be sensitive to connected components of the phase field level sets and provide a proof of Gamma-convergence of our model to the sharp interface limit. Furthermore, we show some numerical results. This is joint work with Stephan Wojtowytsch (Durham University) and Antoine Lemenant (Universit Paris 7).