Matteo Novaga (Pisa, Italy)
Electrified liquids are well known to be prone to a variety of interfacial instabilities that result in the onset of apparent interfacial singularities and liquid fragmentation. In the case of electrically conducting liquids, one of the basic models describing the equilibrium interfacial configurations and the onset of instability assumes the liquid to be equipotential and interprets those configurations as local minimizers of the energy consisting of the sum of the surface energy and the electrostatic energy. Surprisingly, this classical geometric variational model is mathematically ill-posed irrespectively of the degree to which the liquid is electrified.
Specifically, an isolated spherical droplet is never a local minimizer, no matter how small is the total charge on the droplet, since the energy can always be lowered by a smooth, arbitrarily small distortion of the droplet’s surface. This is in sharp contrast with the experimental observations that a critical amount of charge is needed in order to destabilize a spherical droplet. We discuss some possible regularization mechanisms for the considered free boundary problem